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Abstract: We construct solutions to five dimensional minimal supergravity using an

Atiyah-Hitchin base space. In examining the structure of solutions we show that they

generically contain a singularity either on the Atiyah-Hitchin bolt or at larger radius where

there is a singular solitonic boundary. However for most points in parameter space the

solution exhibits a velocity of light surface (analogous to what appears in a Gödel space-

time) that shields the singularity. For these solutions, all closed time-like curves are causally

disconnected from the rest of the space-time in that they exist within the velocity of light

surface, which null geodesics are unable to cross. The singularities in these solutions are

thus found to be hidden behind the velocity of light surface and so are not naked despite the

lack of an event horizon. Outside of this surface the space-time is geodesically complete,

asymptotically flat and can be arranged so as not to contain closed time-like curves at

infinity. The rest of parameter space simply yields solutions with naked singularities.

Keywords: Chern-Simons Theories, Black Holes, Supergravity Models.

mailto:smastoty@sciborg.uwaterloo.ca
mailto:rbmann@sciborg.uwaterloo.ca
http://jhep.sissa.it/stdsearch


J
H
E
P
0
6
(
2
0
0
8
)
0
8
7

Contents

1. Introduction 1

2. Generating solutions to 5D minimal supergravity 3

3. The Atiyah-Hitchin space 4

4. SUSY solution with an Atiyah-Hitchin base 8

4.1 Finding the equations and their asymptotes 8

4.2 Generic properties of the solutions 13

4.2.1 The forms of the metric 13

4.2.2 Regions with closed time-like curves 13

4.2.3 Physical quantities and parameter restrictions 19

4.2.4 Singularities and solitons 20

5. Discussion 22

1. Introduction

Higher dimensional gravity solutions continue to receive a lot of attention because such solu-

tions generally exhibit much richer structure and deeper physics than their four dimensional

counterparts. Amongst their most notable features is their topology. Black holes in four

dimensional space-time can only have a horizon topology of S2, enforced by the black hole

uniqueness theorem, whereas in five dimensions such a uniqueness theorem does not exist

and black holes can have a horizon topology of either S3, such as the Myers-Perry black

hole [1], or S2×S1, such as the black ring found by Emparan and Reall [2]. An example of

richer structure in higher dimensions is the black saturn configuration found by Elvang and

Figueras [3], which describes a black hole surrounded by a black ring; the rotations of both

objects can be chosen so that the total angular momentum is zero, leading to a solution

with the same mass and angular momentum as a five dimensional Schwarzschild solution.

In even higher dimensional space-time the horizon topology can become increasingly more

complicated and the solutions much more physically rich.

These strictly higher dimensional solutions are important for deepening our un-

derstanding of gravitational physics but they are not necessarily the low-energy

supersymmetry-preserving states of string theory that we can use to further investigate

issues in quantum gravity. However, coupling gravity to supersymmetry gives us super-

gravity solutions that can then be embedded in ten or eleven dimensional supergravity

theories which in turn may provide consistent backgrounds for string theory. In ref. [4],
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Gauntlett et al. set out a prescription for generating solutions to five dimensional minimal

supergravity. The solutions fall into two classes depending on whether the Killing vector

constructed from the Killing spinor is time-like or null. There has been a large amount of

work recently generating solutions, both by the construction laid out by Gauntlett et al.

and by other means such as the Bena-Warner algorithm [5]. The BMPV (Breckenridge-

Myers-Peet-Vafa) solution of [6] is constructed on a flat base space and describes an asymp-

totically flat black hole specified by a mass and two equal angular momenta and exhibits a

horizon topology of S3. Elvang et al. constructed an asymptotically flat supersymmetric

black ring solution on a flat base space specified by a mass and two independent angular

momenta [7]. The supersymmetric Gödel solution in ref. [4] is also constructed on a flat

base space and is the five dimensional supersymmetric analogue of the Gödel universe. Su-

persymmetric Kerr- and Schwarzschild-Gödel black holes have been constructed in ref. [8].

In [9], Tomizawa et al. used the Eguchi-Hanson space to construct a supersymmetric black

ring solution specified by a mass and two equal angular momenta. In [10, 11] Gauntlett

and Gutowski constructed supersymmetric analogues to the black saturn configuration;

their solutions describe concentric black rings with an optional black hole at the common

center. In [12] Bena and Kraus used the Taub-NUT base space to construct a black ring

solution that is specified by three charges and three dipole moments.

In the present paper we use the construction described by Gauntlett et al. in ref. [4]

using the Atiyah-Hitchin metric as our hyper-Kähler base space. If the base space used

admits a Gibbons-Hawking form then the solution is generated by a series of source func-

tions harmonic on the base. Unlike the other four dimensional hyper-Kähler metrics (i.e.

the flat, Taub-NUT and Eguchi-Hanson spaces) the Atiyah-Hitchin metric cannot be put

into a Gibbons-Hawking form and so we must resort to other means. For simplicity we

choose all the metric functions to only be functions of the radial coordinate and the solu-

tion so constructed is generated by two first-order differential equations and one Poisson

equation on the base. Although the Atiyah-Hitchin metric depends on the radial coordi-

nate through elliptic integral functions, remarkably Bena et. al. were able to solve the

supergravity equations analytically via a judicious choice of radial coordinate [13] . We

employ these results along with a different ansatz for the 1-form connection to construct

and analyze a new solution. Based on the properties of this solution we show that for

most of the parameter space, our space-time describes a region of closed time-like curves

which surrounds either a naked singularity or a singular solitonic boundary and which is

causally disconnected from the rest of the space-time where observers live. There is a set

of parameter space of measure zero for which such singularities are not so shielded.

This solution seems to be a new type of causal structure similar to, yet importantly

distinct from, Gödel and black hole-Gödel solutions. In such solutions the closed time-like

curves exist outside of a certain region and hence extend to asymptotic infinity. In our

solution the closed time-like curves exist within an impenetrable bounded region, causally

disconnecting the pathological region from the rest of the space-time, which includes a flat

asymptotic infinity. It seems, then, that the solution presented here has the potential to

lead to a well defined holographic dual description (provided such a description exists),

free of pathologies, despite the closed time-like curves present in the bulk. This last issue
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is perhaps the most tantalizing aspect of our solution and merits further investigation; a

discussion of this is postponed until section 5.

This paper begins in section 2 with a very brief review of the solution generating

technique for five dimensional minimal supergravity outlined by Gauntlett et al. in ref. [4].

In section 3 we provide an overview of the Atiyah-Hitchin metric as well as a brief discussion

of its key features. We go on in section 4 to solve the equations of five dimensional minimal

supergravity using the Atiyah-Hitchin metric as the base space. In section 4.1 we give

analytic expressions for the solution near the center of the space-time and at asymptotic

infinity, as well as provide plots of the solution for the rest of the space-time. In section 4.2

we analyze the space-time and discuss the generic properties of our solution. We conclude

in section 5 with a summary of our solution and a discussion of the various issues raised

throughout the paper as well as possible future research directions.

2. Generating solutions to 5D minimal supergravity

Here we briefly outline the key aspects of the solution generating technique for five dimen-

sional minimal supergravity in order to make our paper more or less self contained; for a

complete description the reader is referred to ref. [4]. The bosonic sector of five dimensional

minimal supergravity is governed by the same action as Einstein-Maxwell theory with an

additional Chern-Simons term

S =
1

4πG

∫
(

−1

4
R ⋆ 1 − 1

2
F∧ ⋆F − 2

3
√

3
F ∧ F ∧A

)

(2.1)

where G is the five dimensional Newton’s constant, ⋆ denotes the Hodge dual operator and

F = dA is the field strength. The solutions to the equations of motion of this action are

supersymmetric if they admit a Killing spinor from which a real scalar, q, real 1-form, V,

and three complex 2-forms, Φ(ab), are constructed. The solutions are classified according

to whether V, which is also a Killing vector and satisfies VαV
α = −q2, is time-like or

null. We shall only focus on the time-like case here. It is further assumed, without loss of

generality, that q > 0 so as to avoid V α becoming null; the case of q < 0 has modifications

to what follows but the resulting solution is the same in both cases.

If we introduce coordinates such that V α∂α = ∂/∂t then the metric can be written

locally as

ds2 = −H−2(dt + ω)2 +Hhmndx
mdxn (2.2)

where we introduce the scalar H = q−1 for convenience and ω is a 1-form connection.

The metric Hhmn is obtained by projecting the full metric perpendicular to the orbits of

V α and furthermore hmn must be hyper-Kähler with a positive orientation chosen so that

the hyper-Kähler structures (related to the Φ(ab)) are anti-self-dual. We will thus denote

hmndx
mdxn = ds2B where the base space, B, is endowed with a hyper-Kähler metric.

We next define

e0 = H−1(dt + ω) (2.3)
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so that if σ defines the proper positive orientation on B then e0 ∧ σ will define a positive

orientation on the five dimensional space-time. With this definition, the form for F is

F =

√
3

2
de0 − 1√

3
G+ (2.4)

where G+ is a self dual 2-form on B defined via

G+ =
H−1

2
(dω + ⋆4dω). (2.5)

Here ⋆4 denotes the Hodge dual on the four dimensional space B.

The Bianchi identity and the equation of motion for F respectively give

dG+ = 0 (2.6)

∆H =
4

9
(G+)2 (2.7)

where

∆ =
1√
g
∂i(

√
ggij∂j) (2.8)

is the Laplacian operator on the base space. The consequence of eq. (2.6) is that we can

write G+ = αdΩ, where α is a constant and Ω is a 1-form.

If the base space admits a triholomorphic Killing vector field then its metric can be put

into Gibbons-Hawking form and the five dimensional supergravity solutions are generated

by four arbitrary functions harmonic on the base if G+ = 0 or three if G+ 6= 0. An

example of a hyper-Kähler base space which admits a triholomorphic Killing vector field

is the Eguchi-Hanson space and in ref. [9] Tomizawa et al. constructed a supersymmetric

black ring on this space exploiting its Gibbons-Hawking form. The Atiyah-Hitchin space,

however, does not admit a Gibbons-Hawking metric and so we must grind through the

machinery of this section to obtain our solution.

3. The Atiyah-Hitchin space

The dynamics of two non-relativistic BPS (Bogomol’nyi-Prasad-Sommerfield) monopoles

is described by a manifold M which has the product structure

M = R
3 × S1 ×M

Z2
(3.1)

where a point in R
3 × S1 denotes the centre of mass of the system and a time-varying

phase angle that determines the total electric charge, while a point in M specifies the

monopole separation and a relative phase angle. The four dimensional manifold, M , is

invariant under SO(3) and can be parameterised by a radial coordinate r, roughly giving

the separation of the monopoles, and Euler angles θ, φ and ψ with ranges 0 ≤ θ ≤ π,

0 ≤ φ ≤ 2π, and 0 ≤ ψ ≤ 2π.
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We introduce a basis for SO(3) via the left invariant Maurer-Cartan 1-forms, which

are related to the Euler angles through the relations

σR1 = − sinψdθ + cosψ sin θdφ

σR2 = cosψdθ + sinψ sin θdφ (3.2)

σR3 = dψ + cos θdφ

and which have the property

dσRi =
1

2
εijkσ

R
j ∧ σRk . (3.3)

For convenience, in further discussion we drop the superscript R. In terms of these 1-forms,

the flat metric on R
4 is given by ds2 = dR2 + R2

4 (σ1
2 + σ2

2 + σ3
2), the metric on a unit

radius S3 is given by dΩ3
2 = 4(σ1

2 + σ2
2 + σ3

2) and the metric on a unit radius S2 is

given by dΩ2
2 = σ1

2 +σ2
2. The metric on M , known as the Atiyah-Hitchin metric, can be

written in the explicitly SO(3) invariant form

ds2 = f2(r)dr2 + a2(r)σ1
2 + b2(r)σ2

2 + c2(r)σ3
2. (3.4)

As shown in [15] the above metric satisfies the vacuum Einstein equations and is self dual,

which in four dimensions ensures it is hyper-Kähler, if a(r), b(r), and c(r) satisfy the

differential equations
d

dr
a(r) = f(r)

(b(r) − c(r))2 − a2(r)

2b(r)c(r)
(3.5)

plus the two equations obtained by cyclically permuting a(r), b(r), and c(r). As can be

easily verified, if we impose a(r) = b(r) = c(r) then the constraint equations yield the flat

metric on R
4 given above. Similarly, it can easily be checked that choosing any two of

a(r), b(r) and c(r) being equal (for example a(r) = b(r) 6= c(r)) the resulting metric is the

Euclidean Taub-NUT metric. Imposing the condition that none of the functions are equal

yields the Atiyah-Hitchin metric.

The function f(r) defines the radial coordinate and hence we are able to freely choose

its form. In ref. [16], Atiyah and Hitchin used f(r) = a(r)b(r)c(r) to obtain the original

form of their solution. If we instead take f(r) = −b(r)/r then the solution simplifies. We

set

r = 2nK
(

sin(
γ

2
)
)

(3.6)

where K(k), and E(k) encountered shortly, are the complete elliptic integrals of the first

and second kind respectively

K(k) =

∫ π/2

0

dy
√

1 − k2 sin2 y
(3.7)

E(k) =

∫ π/2

0

√

1 − k2 sin2 ydy. (3.8)

As γ takes value in the range [0, π], r takes on values in the range [nπ,∞). If we now define

w1(r) = b(r)c(r), w2(r) = c(r)a(r), w3(r) = a(r)b(r) (3.9)
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as well as

Υ(r) ≡ dr

dγ
=

2nE
(

sin(γ2 )
)

sin(γ)
− nK

(

sin(γ2 )
)

cos(γ2 )

sin(γ2 )
(3.10)

then the solutions for w1(r), w2(r) and w3(r) are given by

w1(r) = −rΥ(r) sin(γ) − r2 cos2(
γ

2
)

w2(r) = −rΥ(r) sin(γ) (3.11)

w3(r) = −rΥ(r) sin(γ) + r2 sin2(
γ

2
).

We could in principle substitute eq. (3.6) in the above expressions to get functions only

dependent upon γ since we cannot invert eq. (3.6) to get an explicit solution for γ(r). For

numerical computations it is simpler to work in terms of the coordinate

x ≡ sin
(γ

2

)

. (3.12)

In performing analysis of the structure of space-time (and various physical observables)

near the points r = nπ and r → ∞ it is easiest to work in terms of r by inverting γ(r) via

a Taylor expansion. We thus will not worry about the implicit dependence on r in what

follows. The metric functions a(r), b(r), and c(r), obtained by solving (3.9) and (3.11),

take the explicit form

a(r) =

√

rΥ(r) sin(γ)
(

r sin2(γ2 ) − Υ(r) sin(γ)
)

r cos2(γ2 ) + Υ(r) sin(γ)
(3.13)

b(r) =

√

(

r cos2(γ2 ) + Υ(r) sin(γ)
)

r
(

r sin2(γ2 ) − Υ(r) sin(γ)
)

Υ(r) sin(γ)
(3.14)

c(r) = −
√

rΥ(r) sin(γ)
(

r cos2(γ2 ) + Υ(r) sin(γ)
)

r sin2(γ2 ) − Υ(r) sin(γ)
. (3.15)

Plots of these functions are given in figure 1.

The Taylor expansions K(k) ≈ π
2 (1 + 1

4k
2) and E(k) ≈ π

2 (1 − 1
4k

2) valid near k = 0

can be used to obtain approximate forms for the metric functions near r = nπ

a(r) = 2(r − nπ)

(

1 − 1

4nπ
(r − nπ) + O((r − nπ)2)

)

b(r) = nπ

(

1 +
1

2nπ
(r − nπ) + O((r − nπ)2)

)

(3.16)

c(r) = −nπ
(

1 − 1

2nπ
(r − nπ) + O((r − nπ)2)

)

.

We make note of the fact that a(r) → 0 as r → nπ and we can get a better picture of what

this means if we rotate our axes such that

σ1 = dψ̃ + cos θ̃dφ̃

σ2 = − sin ψ̃dθ̃ + cos ψ̃ sin θ̃dφ̃ (3.17)

σ3 = cos ψ̃dθ̃ + sin ψ̃ sin θ̃dφ̃.
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Figure 1: The metric functions a(r) (red), b(r) (orange) and c(r) (green) plotted as functions of

the variable x defined in eq. (3.12). Notice that a(r) and b(r) asymptote to the same curve for large

r (i.e. x → 1) while c(r) approaches a constant. In the opposite limit of r → nπ (i.e. x → 0) we

have a(r) → 0 while b(r) and c(r) approach the same (but opposite sign) constant value. These

behaviours are explicitly shown in eqs. (3.16) and (3.19).

Using these rotated axes along with the leading order approximations of (3.16) the metric

near r = nπ becomes

ds2 ≈ dr2 + 4(r − nπ)2(dψ̃ + cos θ̃dφ̃)2 + (nπ)2(dθ̃2 + sin2 θ̃dφ̃2). (3.18)

The third term is the metric on a two-sphere of radius nπ while the second term vanishes

at r = nπ. The three dimensional SO(3) orbit collapses to a two-sphere of radius nπ at

r = nπ and so the center of the Atiyah-Hitchin metric is a Bolt. In the monopole picture,

the Bolt corresponds to when the monopoles coincide [17].

The opposite limit (corresponding to large monopole separation) is that of r → ∞. In

this limit the metric functions a(r), b(r), and c(r) become

a(r) = r
√

1 − 2n/r + O(e−r/n)

b(r) = r
√

1 − 2n/r + O(e−r/n) (3.19)

c(r) = − 2n
√

1 − 2n/r
+ O(e−r/n)

– 7 –



J
H
E
P
0
6
(
2
0
0
8
)
0
8
7

and the metric (3.4) reduces to

ds2 ≈
(

1 − 2n

r

)

(dr2 + r2dθ2 + r2 sin2 θdφ2) + 4n2

(

1 − 2n

r

)−1

(dψ + cos θdφ)2. (3.20)

Note that this is none other than the Euclidean Taub-NUT metric with NUT charge

N = −n; asymptotically the Atiyah-Hitchin metric describes a Taub-NUT space with

negative NUT charge. This is not surprising since at asymptotic infinity we have a(r) = b(r)

and we noted previously that if any two of the metric functions are equal the constraint

equations determine the resulting metric to be Taub-NUT.

The last items necessary for our analysis are the positive orientation and the volume

element of the Atiyah-Hitchin metric. The orientation of the base space must be such that

the hyper-Kähler 2-forms are anti-self-dual. Such a positive orientation for Taub-NUT is

given by Ndr ∧ σ1 ∧ σ2 ∧ σ3 where N is the NUT charge [4]. Since the Atiyah-Hitchin

metric is asymptotically Taub-NUT with negative NUT charge, we establish the vierbein

er = −f(r)dr, e1 = a(r)σ1, (3.21)

e2 = b(r)σ2, e3 = c(r)σ3,

so that positive orientation is given by the volume 4-form vol(g) = er ∧ e1 ∧ e2 ∧ e3. After

expanding in terms of r, θ, φ and ψ this becomes vol(g) = f(r)a(r)b(r)c(r) sin θdr ∧ dθ ∧
dφ ∧ dψ from which we immediately see that

√
g = f(r)a(r)b(r)c(r) sin θ. (3.22)

4. SUSY solution with an Atiyah-Hitchin base

We are now equipped with the tools necessary to generate five dimensional supergravity

solutions on an Atiyah-Hitchin base. Unlike the other hyper-Kähler metrics the Atiyah-

Hitchin metric is rather complicated in its dependence upon the radial coordinate. The first

subsection here is devoted to finding the differential equations that must be obeyed in order

to produce valid solutions and gives the results found by Bena et al. [13] in more convenient

coordinates for our analysis. It also contains approximate forms of the solutions to these

differential equations in the limits r ≈ nπ and r → ∞. We make note of the fact that we

are explicitly choosing H to be a function of r only since it satisfies Poisson’s equation on

the base and is not separable when it is also a function of angle. More solutions with an

Atiyah-Hitchin base space exist, corresponding to other choices of H, but such solutions

are not studied here.

4.1 Finding the equations and their asymptotes

First we seek a solution for G+ = αdΩ which also satisfies eq. (2.5). We thus have to

choose a suitable ansatz for both the 1-forms ω and Ω; following [4] we consider

ω = Ψ(r)σ3 (4.1)

Ω = h(r)σ3 (4.2)

– 8 –
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where Ψ(r) and h(r) are arbitrary functions. Eq. (4.2) along with G+ = αdΩ gives

G+ = nχ0

( −h′(r)
f(r)c(r)

er ∧ e3 +
h(r)

a(r)b(r)
e1 ∧ e2

)

(4.3)

where χ0 = α/n is a dimensionless constant and a prime denotes differentiation with respect

to r. The self-duality of G+ requires that we must have −h′(r)
f(r)c(r) = h(r)

a(r)b(r) and hence h(r)

is given by

h(r) = exp

(

−
∫

f(r)c(r)dr

a(r)b(r)

)

. (4.4)

In ref. [13], Bena et al. choose the radial coordinate, η, such that f(η) = a(η)b(η)c(η),

which is related to our radial coordinate, r, by η = −
∫

dr
ra(r)c(r) . Their analytic solution

for h(η), re-expressed in terms of r, is given by

h(r) =
r2 sin

(γ
2

)

a(r)b(r)
(4.5)

where we have imposed h(r → ∞) = 1 since any constant factors can be absorbed into χ0.

A plot of eq. (4.5) is plotted in figure 2 to demonstrate its behaviour. We can now write

G+ explicitly as

G+ = nχ0

(

h(r)

a(r)b(r)

)

(er ∧ e3 + e1 ∧ e2). (4.6)

With this solution for G+ we can use eq. (2.7) to find the differential equation for

H(r):

1

f(r)a(r)b(r)c(r) sin θ
∂i
(

f(r)a(r)b(r)c(r) sin θgij∂jH(r)
)

=
8

9
n2χ0

2

(

h(r)

a(r)b(r)

)2

. (4.7)

Since H = H(r) and grj = 0 unless j = r the only non zero terms in the Laplacian are

i = j = r and we find

d

dr

(

a(r)b(r)c(r)

f(r)

dH(r)

dr

)

=
8

9
n2χ0

2

(

h2(r)
f(r)c(r)

a(r)b(r)

)

. (4.8)

From (4.4) we have h2(r)f(r)c(r)
a(r)b(r) = −1

2
d
dr (h

2(r)) so the first integration is trivial. The

second order differential equation thus reduces to a first order equation and the solution is

given by

H(r) = δ − n2λ

∫

f(r)dr

a(r)b(r)c(r)
− 4

9
n2χ0

2

∫

h2(r)f(r)dr

a(r)b(r)c(r)
(4.9)

where λ and δ are dimensionless constants of integration. In [13] it is shown that

d

dr

(

(8π2)2

a(r)b(r)

)

=
f(r)

a(r)b(r)c(r)
((8π2)2 − 4h2(r)) (4.10)

so the last term in (4.9) can be integrated exactly, giving

H(r) = δ − n2µ

∫

f(r)dr

a(r)b(r)c(r)
+

n2χ2

a(r)b(r)
(4.11)
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Figure 2: The behaviour of h(r) in terms of the variable x defined via eq. (3.12).

where µ = λ+χ2 and χ = 8π2

3 χ0. The integral above we can recognize as η(r) but it cannot

be written in an analytic form; in [13] η is also written in terms of an integral of elliptic

functions and there is no obvious way to obtain an analytic expression in terms of known

functions. This term is easy to numerically integrate, however, and plots corresponding to

various choices of parameters are given in figure 3. For ease of notation, we will write η(r)

instead of the integral representation in what follows.

The only thing left to find is ω; using the ansatz (4.1) we have

dω =
−Ψ′(r)

f(r)c(r)
er ∧ e3 +

Ψ(r)

a(r)b(r)
e1 ∧ e2 (4.12)

⋆4dω =
−Ψ′(r)

f(r)c(r)
e1 ∧ e2 +

Ψ(r)

a(r)b(r)
er ∧ e3

In accord with eq. (2.5) we conclude that

G+ =
H−1(r)

2

( −Ψ′(r)

f(r)c(r)
+

Ψ(r)

a(r)b(r)

)

(er ∧ e3 + e1 ∧ e2) (4.13)

and comparing this equation with (4.6) we find the ordinary differential equation that Ψ(r)

must satisfy to be

H−1(r)

2

( −Ψ′(r)

f(r)c(r)
+

Ψ(r)

a(r)b(r)

)

=
3nχ

8π2

(

h(r)

a(r)b(r)

)

(4.14)
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(a) parameter choices: χ = 0.1, µ = {10 (red), 5 (or-

ange), 0 (green), -5 (cyan), -10 (blue)}

(b) parameter choices: µ = 0, χ = {2.5 (red), 2 (or-

ange), 1.5 (green), 1 (cyan), 0.5 (blue)}

(c) parameter choices: χ = 0, µ = {10 (red), 5 (or-

ange), 0 (green), -5 (cyan), -10 (blue)}

Figure 3: The behaviour of H(r) for the specified choices of parameters. Note that H(r) can

become negative: this point will be interpreted and expanded on later.

which we can manipulate into a more digestible form. Rearranging, multiplying both sides

by h(r) and integrating we find

h(r)Ψ(r) = nℓ+
3nχ

8π2

∫

H(r)
d

dr
(h2(r))dr (4.15)

where ℓ is a dimensionless constant of integration. The above integrand can be solved
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analytically, which is more apparent if we change coordinates from r to η and break up the

integrand as follows:

Ψ(η) =
nℓ

h(η)
+

3nχ

8π2h(η)

[
∫

(δ − n2µη)
d

dη
(h2(η))dη − 2n2χ2

∫

c2(η)

a(η)b(η)
h2(η)dη

]

(4.16)

The first integrand can be integrated by parts (and converted back to r) to yield:
∫

(

δ − n2µη
) d

dη
(h2(η))dη =

(

δ − n2µη
)

h2(η) + n2µ

∫

h2(η)dη

=
(

δ − n2µη(r)
)

h2(r) + 16π4n2µ

(

η(r) − 1

a(r)b(r)

)

(4.17)

where in the second step we have again used the result (4.10). The second integrand

of (4.16) is found in [13] to have the solution (after converting back to r)
∫

c2(η)

a(η)b(η)
h2(η)dη = −8π4

3

(

2c2(r)

a2(r)b2(r)
− b(r)c(r) + a(r)c(r)

a2(r)b2(r)

)

(4.18)

so the full solution for Ψ(r) takes the form

Ψ(r) =
nℓ

h(r)
+

3nχ

8π2
h(r)

(

δ − n2µη(r)
)

+
6π2n3χµ

h(r)

(

η(r) − 1

a(r)b(r)

)

+2π2n3χ3

(

2c2(r) − c(r)(a(r) + b(r))

h(r)a2(r)b2(r)

)

(4.19)

A plot of Ψ(r)
n for various choices of parameters is given in figure 4

With the equations for h(r), H(r) and Ψ(r) we can find their forms near r = nπ; using

the approximations (3.16) we find

h(r) ≈
( r

nπ
− 1
)−1/2

+ O
(

( r

nπ
− 1
)1/2

)

(4.20)

η(r) ≈ − ln 2

n2π2
+

1

2n2π2
ln
( r

nπ
− 1
)

+ O
( r

nπ
− 1
)

(4.21)

H(r) ≈ Γ − µ

2π2
ln
( r

nπ
− 1
)

+
χ2

2π2

( r

nπ
− 1
)−1

+ O
(( r

nπ
− 1
))

(4.22)

Ψ(r)

n
≈ 3χ3

2

( r

nπ
− 1
)−3/2

− 3µχ

16π4

( r

nπ
− 1
)−1/2

ln
( r

nπ
− 1
)

(4.23)

+3χ

(

δ

8π2
+
µ ln 2

8π4
− χ2

4
− µ

)

( r

nπ
− 1
)−1/2

+ O
(

( r

nπ
− 1
)1/2

)

.

Here Γ = δ + µ ln 2
π2 − χ2

8π2 . Similarly using the approximations (3.19), we find to leading

order the large-r approximations to be

h(r) ≈ 1 +
2n

r
(4.24)

η(r) ≈ −1

4n2

2n

r
(4.25)

H(r) ≈ δ +
µ

4

2n

r
+
χ2

4

(

2n

r

)2

(4.26)

Ψ(r)

n
≈
(

ℓ+
3δχ

8π2

)

+

(

3δχ

8π2
− ℓ− 3χµ

32π2
(16π4 − 1)

)

2n

r
. (4.27)
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We make note of the fact that no matter the values of χ and µ, the asymptotic value of

H(r) is always δ, whose value we can fix by requiring gtt → −1 as r → ∞ and hence we

have δ = 1.

To summarize, in this subsection we have found the differential equations that h(r),

H(r) and Ψ(r) must satisfy in order to give a five-dimensional supersymmetric solution

on an Atiyah-Hitchin base space. We have used the exact solutions found in ref. [13] and

we have found Taylor series expansions to these equations in both the small-r and large-r

limits. A fully explicit analytic solution for arbitrary r is intractable because η(r) is defined

as an integral of elliptic functions and it is currently unknown whether it has an analytic

form. Fortunately this is unimportant since a large amount of information can be derived

from the form of the solution with only qualitative knowledge about the these functions.

The next subsection is devoted to such an approach.

4.2 Generic properties of the solutions

4.2.1 The forms of the metric

The full five dimensional metric takes the explicit form

ds2 = − 1

H2(r)
(dt + Ψ(r)σ3)

2 +H(r)
(

f2(r)dr2 + a2(r)σ1
2 + b2(r)σ2

2 + c2(r)σ3
2
)

(4.28)

which, for convenience can also be written in the expanded form

ds2 = − 1

H2(r)
dt2 − 2

Ψ(r)

H2(r)
dtσ3 +G(r)σ3

2 +H(r)(f2(r)dr2 + a2(r)σ1
2 + b2(r)σ2

2) (4.29)

where

G(r) = H(r)c2(r) − Ψ2(r)

H2(r)
. (4.30)

We also write down the lapse-shift form of the metric:

ds2 = −N 2(r)dt2 + G(r)

(

σ3 −
Ψ(r)

H2(r)G(r)
dt

)2

+H(r)(f2(r)dr2 + a2(r)σ1
2 + b2(r)σ2

2)

(4.31)

where

N 2(r) =
1

H2(r)

(

1 +
Ψ2(r)

H2(r)G(r)

)

=
c2(r)

H(r)G(r)
(4.32)

is the lapse function.

4.2.2 Regions with closed time-like curves

From the metric form of (4.29) we can see that something special happens when G(r)

becomes negative since gψψ also turns negative. Although ∂ψ is not a Killing vector of the

full metric, by examining a congruence of null geodesics we show that the region where

G(r) < 0 is one where closed time-like curves (CTCs) are indeed present. We start by

considering the tangent vector to null geodesics

kα∂α = ṫ∂t + ṙ∂r + θ̇∂θ + φ̇∂φ + ψ̇∂ψ (4.33)
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(a) parameter choices: µ = 0, χ = 0, j = {2

(red), 1 (orange), -1 (green), -2 (blue)}

(b) parameter choices: µ = 0, j = 0, χ = {0.5

(red), 0.4 (orange), 0.3 (green), 0.2 (cyan), 0.1

(blue)}

(c) parameter choices: µ = 1, χ = 0.1, j = {2

(red), 1 (orange), 0 (green), -1 (cyan), -2 (blue)}

Figure 4: Plots of Ψ(r)
n

for the specified choices of parameters, where j ≡ ℓ + 3χ

8π2 ; these three

plots show the generic behaviour of Ψ(r). In plots (a) and (c), Ψ(r) is bounded between the red

and blue curves as is explained later. Plot (c) shows the most interesting behavior: because Ψ(r)

can go from positive values to negative values at some radius R; the direction of frame dragging in

the space-time is different on each side of R.

where a dot refers to differentiation with respect to the affine parameter, λ. We also

consider the following four Killing vectors of the full five dimensional metric

ξ(t)
α∂α = ∂t

ξ(φ)
α∂α = ∂φ (4.34)
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ξ(1)
α∂α = sinφ∂θ + cot θ cosφ∂φ −

cosφ

sin θ
∂ψ

ξ(2)
α∂α = cosφ∂θ − cot θ sinφ∂φ +

sinφ

sin θ
∂ψ.

The conserved energy and angular momenta associated with these Killing vectors are

−E = ξ(t)
αkα, Lφ = ξ(φ)

αkα, L1 = ξ(1)
αkα, L2 = ξ(2)

αkα. (4.35)

We wish to study geodesics which are locally non-rotating and hence we choose Lφ = L1 =

L2 = 0 which implies θ̇ = φ̇ = 0. We can therefore consider the effective metric on the

(t, r, ψ) hypersurface given by

ds̃2 = − 1

H2(r)
dt2 − 2

Ψ(r)

H2(r)
dtdψ + G(r)dψ2 +H(r)f2(r)dr2. (4.36)

In this effective metric, ∂ψ is a Killing vector. When G(r) < 0, we have ∂ψ becoming time-

like and it is for this reason that the surface defined by G(r) = 0 is a boundary beyond

which CTCs are present. This boundary, commonly denoted the velocity of light surface

in the literature, will hereafter be labeled rctc. Furthermore, we are only concerned with

cases where rctc ≥ nπ so that the velocity of light surface falls within our coordinate range.

The metric (4.36) can possibly cause some confusion about what it means when G(r) <

0. If we take t=constant slices and ψ=constant slices, each time we are left with a time-like

hypersurface provided G(r) < 0 so we might be tempted to conclude that there are two

time-like directions in this region. This is nothing more than a coordinate artifact as the

determinant of the metric, det(g) = −f2(r)c2(r), does not change sign. Furthermore we

can make the coordinate transformation

T = t+ Ψ(rctc)ψ (4.37)

so that the metric takes the form

ds̃2 = − 1

H2(r)
(dT + (Ψ(r) − Ψ(rctc))dψ)2 +H(r)c2(r)dψ2 +H(r)f2(r)dr2. (4.38)

In the vicinity of G(r) = 0 (i.e. r = rctc), if we take T=constant slices we are left with a

space-like metric while taking ψ=constant slices yields a time-like one. This T coordinate

gets rid of the confusion caused by the t coordinate but it is inconvenient to work with so

we will no longer use it in further analysis.

Utilizing the remaining constraints of (4.35), as well as the property that kα is null,

we find the tangent vector to our family of null geodesics to be given by

k±
α∂α = E±

(

H(r)G(r)

c2(r)
∂t ±

√

G(r)

f(r)c(r)
∂r +

Ψ(r)

H(r)c2(r)
∂ψ

)

(4.39)

where + and − represent outgoing and ingoing geodesics respectively and E± are chosen

so that k+
αk−α = −1. Upon making the convenient choice E− = 1, this normalization

implies that at some radius, ro,

E+ =
c2(ro)

2H(ro)G(ro)
. (4.40)

– 15 –



J
H
E
P
0
6
(
2
0
0
8
)
0
8
7

At the velocity of light surface we have dr
dt = ± c(r)

f(r)H(r)
√

G(r)
→ ∞ and we also have

dr
dλ = ±E±

√
G(r)

f(r)c(r) → 0, meaning that null rays cannot cross this surface. We find the

expansion scalar, Θ = kα;α, of the congruence to be given by

Θ± = ±
(

G′(r)

c(r)f(r)
√

G(r)

)

E± (4.41)

where a prime denotes differentiation with respect to r. In a neighbourhood of rctc, G′(r) >

0 is well behaved and hence the expansions are infinite there. This shows that the ingoing

congruence is converging into a caustic and the outgoing congruence is diverging from a

caustic at rctc.

We can further see that null geodesics are unable to cross the velocity of light surface

if we look at the null congruence as a limiting case of a time-like congruence. Suppose now

that instead of a vector field kα tangent to null geodesics we have a vector field uα which

is tangent to time-like geodesics. We still wish to find locally non-rotating solutions so just

as before we set Lφ = L1 = L2 = 0 and we can again consider the effective metric on the

(t, r, ψ) plane. The only difference between uα and our previous kα will be in ṙ because of

the different normalization conditions for null and time-like tangent vectors. We find the

normalized tangent vector to be

u±
α∂α = E

H(r)G(r)

c2(r)
∂t ±

√

E2H(r)G(r) − c2(r)

c(r)f(r)
√

H(r)
∂r + E

Ψ(r)

H(r)c2(r)
∂ψ (4.42)

where E > 0 is the energy per unit rest mass of the particle on the geodesic. We can

immediately read off dr
dτ and dr

dt , which are given by

dr

dτ
=

√

E2H(r)G(r) − c2(r)

c(r)f(r)
√

H(r)
(4.43)

dr

dt
=

c(r)
√

E2H(r)G(r) − c2(r)

Ef(r)H3/2(r)G(r)
(4.44)

and we note that since H(r) is necessarily positive when G(r) is positive, we have a radius,

rtp > rctc, such that
√

E2H(rtp)G(rtp) − c2(rtp) = 0. We thus have both dr
dτ and dr

dt

vanishing before the particle reaches rctc, signaling a turning point in the trajectory. The

limit to null geodesics is E → ∞ and since there is a turning point for all time-like geodesics

we see that the velocity of light surface is a turning point for null geodesics. This merits

further discussion.

This impenetrable velocity of light surface is directly analogous to what appears in the

Gödel space-times [18 – 20] and the solutions describing black holes embedded in a Gödel

space-time [8, 21 – 23], hereafter called BH-Gödel solutions. There are, however, a few very

important distinctions that should be pointed out. The first is that the Gödel solutions are

homogeneous, meaning that the existence of CTCs outside of the velocity of light surface

implies there exist CTCs through every point in the space-time. Our solution, on the other

hand, is not homogeneous because the Atiyah-Hitchin bolt imposes the notion of a center
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(a) parameter choices: µ = 3, χ = 0.1, j = {2 (red),

1 (orange), 0 (green), -1 (cyan), -2 (blue)}

(b) parameter choices: µ = 4, χ = 0.1, j = {2 (red),

1 (orange), 0 (green), -1 (cyan), -2 (blue)}

(c) parameter choices: µ = 2, χ = 2/9, j = {2 (red),

1 (orange), 0 (green), -1 (cyan), -2 (blue)}

(d) parameter choices: µ = 0, j = 0, χ = {0.5 (red),

0.4 (orange), 0.3 (green), 0.2 (cyan), 0.1 (blue)}

Figure 5: Plots of G(r) for the specified choices of parameters, where j = ℓ + 3χ

8π2 . All four plots

demonstrate that there exists at least one radius, rctc, at which G(r) changes sign. Plot (d) shows

that if µ = j = 0 then there is only one such radius whereas plots (a)-(c) show that there may

be multiple such radii in general. Furthermore, plot (c) shows that there are certain choices of

parameters (in this case the green curve) for which both G(r) and G′(r) vanish at some radius rcrit.

This surface is similar to the velocity of light surface except that it takes infinite affine parameter

to reach.

to the space-time. This is similar to the broken homogeneity of the BH-Gödel solutions

in which the black hole defines the center. The second distinction is that our solution
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describes an inverted Gödel-like solution in the sense that the space-time constructed here

contains no CTCs for r > rctc, as can clearly be seen from figure 5. The Gödel solutions

are CTC-free for r < rctc and the BH-Gödel solutions are CTC-free for rH < r < rctc
where rH denotes the horizon of the black hole. A null ray emanating from the origin in

a Gödel space-time (or the horizon in a BH-Gödel space-time) travels out to the velocity

of light surface where it forms a caustic and then returns to the origin (or horizon) in

finite affine parameter [18, 19, 8]. In our solution the null ray is emitted from infinity,

travels inward to the velocity of light surface where it forms a caustic and then returns to

infinity. This process is also done in finite affine parameter as can be seen by integrating
dr
dλ = ±E±

√
G(r)

f(r)c(r) in the vicinity of rctc. It is sufficient to show that the null ray can travel

from some r1, slightly greater than rctc, to r2 = rctc in finite affine parameter since for

r > rctc the null ray can usually travel between any two points in finite affine parameter

(the only exception is pointed out below). It should be noted that traveling from infinity to

some finite value of r always happens in infinite affine parameter but this type of infinity

is simply associated with an infinite distance the null rays have to travel and hence is not

of interest to us. We start by Taylor expanding f(r), c(r) and G(r) around r = rctc:

f(r) ≈ f(rctc) + f ′(rctc)(r − rctc) (4.45)

c(r) ≈ c(rctc) + c′(rctc)(r − rctc) (4.46)

G(r) ≈ G′(rctc)(r − rctc). (4.47)

Next we integrate
∫ λ2

λ1
dλ =

∫ rctc
r1

−f(r)c(r)√
G(r)

dr and find the solution

∆λ =
2f(rctc)c(rctc)
√

G′(rctc)

√
r1 − rctc + O((r1 − rctc)

3/2). (4.48)

This is clearly finite since G′(rctc) 6= 0 as can explicitly be seen in figure 5. We have

thus shown the desired result that null rays travel from large (but finite) ro down to rctc
and back to ro in finite affine parameter. The Atiyah-Hitchin space-time that we have

constructed here, then, seems to describe a new type of Gödel-like solution in which the

region absent of CTCs includes spatial infinity. We also note that the norm of the time-like

Killing vector, ∂t, can be set to asymptote to unity at infinity so the coordinate time is an

appropriate one for observers at infinity.

As a caution, we point out that there are parameter choices for which G(r) = 0 and

G′(r) = 0 at some critical radius, rcrit > rctc, and so we must check to see whether the

same result just derived holds for this surface as well. The only difference in the analysis

is that we replace rctc by rcrit and we also now have G(r) ≈ G′′(rcrit)
2 (r − rcrit)

2:

∆λ ≈
√

2f(rcrit)c(rcrit)
√

G′′(rcrit)

∫ rcrit

r1

−dr
r − rcrit

(4.49)

which does not converge. It thus takes an infinite affine parameter for null rays to reach

the critical radius. Furthermore, on these critical surfaces the expansion scalar of the null

congruence is finite, so no caustics form and hence these surfaces are not turning points in
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the trajectory. Such surfaces causally disconnect the outer region (r > rcrit) from the inner

region (r < rcrit); as the outer region is no longer geodesically complete such solutions do

not exhibit the same nice behavior as those with just a velocity of light surface.

4.2.3 Physical quantities and parameter restrictions

Using the large−r approximations for the various metric functions, the full metric as r → ∞
takes the explicit form

ds2 ≈ −
(

1 − µ

2

2n

r

)

dt2 +

(

1 +
(µ

4
− 1
) 2n

r

)

(dr2 + r2dΩ2
2) (4.50)

+n2

(

4 − j2 +

[

µ+ 4 + j2
(

4 +
µ

2

)

+
3χj

16π2

(

µ(16π2 − 1) − 8
)

]

2n

r

)

σ3
2

−2n

(

j +

[

3χ

4π2
− j − 3χµ

32π2
(16π4 − 1)

]

2n

r

)

dtσ3.

where j ≡ ℓ + 3χ
8π2 . The dtσ3 metric element approaches −nj as r → ∞ so our solution

describes a space-time which is rotating at infinity provided j 6= 0; indeed if we consider

radial null geodesics as in eq. (4.39) then dψ
dt 6= 0 unless j = 0. The Riemann tensor

vanishes as r → ∞ and our solution is asymptotically a U(1) fibration over four dimensional

Minkowski space-time; the radius of the circle parameterized by ψ is n
√

4 − j2.

To calculate the energy and angular momenta, we choose the “natural” foliation of

the space-time by a family of space-like hypersurfaces, Σt, perpendicular to the orbits of

ξ(t)
α. In this way, it is observers who are locally non-rotating at infinity (so-called “zero

angular momentum” observers) who measure these quantities. The time-like normal to

these hypersurfaces is nα = H(r)ξ(t)
α and the radial normal to the boundary, St ≡ ∂Σt,

of these hypersurfaces is rαdx
α =

√

H(r)f2(r)dr. We note that ∂ψ is asymptotically a

Killing symmetry so we use the Komar formulae:

E = − 1

8π
lim
r→∞

[

∮

St(r)
−2ξ(t)

β;αn[αrβ]

√
σdθdφdψ

]

(4.51)

Jφ,ψ =
1

16π
lim
r→∞

[

∮

St(r)
−2ξ(φ,ψ)

β;αn[αrβ]

√
σdθdφdψ

]

(4.52)

where
√
σ = −

√

H3(r)a(r)b(r)c(r) sin θ is the determinant of the metric induced on St.

From this, we find the ADM energy and angular momenta to be given by

E = 2n2πµ, (4.53)

Jψ =
n3

16π

[

16π2j(2 − µ) + 3χµ(16π4 − 1) − 24χ
]

, (4.54)

Jφ = 0. (4.55)

The total energy can be positive, negative or zero depending on the value of µ. Recall that

µ = λ+χ2 so λ, which very loosely speaking plays the role of the mass of some gravitating

object, can contribute positively or negatively to the total energy while χ, which plays
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the role of a Chern-Simons charge, always contributes positively to the total energy. The

solitonic solutions, which will be shown explicitly shortly, are always found to be solutions

with negative total energy. The fact that Jφ = 0 is related to our previous discovery that

we can consider φ̇ = 0 for null geodesics; there is no frame dragging around the φ-axis.

We have seen that a velocity of light surface appears whenever G(r) = 0, and now we

would like to find solutions that do not possess CTCs at spatial infinity. Clearly from the

metric (4.50), the condition we must satisfy is 4− j2 ≥ 0 and thus we have the restriction:

−2 ≤ j ≤ 2 (4.56)

where equality above leads to another velocity of light surface forming at spatial infinity.

From this inequality and the definition j = ℓ + χ0 (recall χ = 8π2

3 χ0), we interpret χ0 as

being a parameter contributing to a twisting of the space-time, which is not so surprising

as its presence is a result of the Chern-Simons term in the action. When χ0 = 0 there is a

symmetry in the solution: under −2 ≤ ℓ ≤ 2 the sense of rotation depends on the sign of

ℓ. When χ0 6= 0 this symmetry is destroyed because of the extra rotation that χ0 supplies;

instead the symmetry is in the form −2 < ℓ + χ0 < 2. If we consider χ0 > 0 then the

restriction on ℓ is −(2 + χ0) ≤ ℓ ≤ (2 − χ0) but if we consider sending χ0 → −χ0 then the

restriction becomes −(2 − χ0) ≤ ℓ ≤ (2 + χ0). Changing the sign of χ0 thus changes the

sign of the restriction on ℓ; the sign of χ0 determines the handedness of the extra rotation

supplied by χ0.

4.2.4 Singularities and solitons

We can use the small−r approximations along with the rotated axes of (3.17) to write

down the asymptotic form of the metric near r = nπ. If χ 6= 0 then the metric goes to

ds2 ≈ −4π4

χ4

( r

nπ
− 1
)2
dt2 − 12nπ4

χ2

( r

nπ
− 1
)1/2

dtσ̃2 − 9n2π4χ2
( r

nπ
− 1
)−1

σ̃2
2

+
χ2

2π2

( r

nπ
− 1
)−1

(

dr2 + 4(nπ)2
( r

nπ
− 1
)2
σ̃2

3 + (nπ)2(σ̃2
1 + σ̃2

2)

)

(4.57)

Note that we no longer have the SO(3) orbit collapsing in dimensionality on the bolt,

which can be seen from the determinant of the metric:

det(g) = −H2(r)f2(r)a2(r)b2(r)c2(r) sin2 θ. (4.58)

Near r = nπ the determinant approaches a constant value since H(r) ∼
(

r
nπ − 1

)−1
and

a(r) ∼
(

r
nπ − 1

)

while all of the other functions approach constant values. The “bolt”

is still a singularity because both the Kretschmann and Ricci scalars diverge there. For

instance, for χ 6= 0 we find the Ricci scalar to leading order to be

R ≈ −3

n2χ2
(15π4 − 1)

( r

nπ
− 1
)−1

, (4.59)

for χ = 0, µ 6= 0 it is given by

R ≈ 1

µn2π

(

( r

nπ
− 1
)2

ln
( r

nπ
− 1
)3
)−1

, (4.60)
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and for χ = µ = 0 it reduces to

R ≈ 2

(nπ)2
+

j2

4n2π4

( r

nπ
− 1
)−1

(4.61)

We thus have a singularity at r = nπ for all choices of parameters except the very specific

choice χ = µ = j = 0. We were unable to find any solutions that exhibit an event horizon

so the curvature singularity at r = nπ is not hidden behind such a surface. However, if a

velocity of light surface is present then the singularity is always hidden behind it and so is

not truly naked.

The singularity at r = nπ is not the only singularity potentially present in the space-

time; from the form of the metric given in eq. (4.28), it is easy to see that if H(r) is

negative then the space-time attains a Euclidean signature (− − − − −) meaning that at

some radius, rs > nπ, such that H(rs) = 0, there is a solitonic boundary. The solution

generating technique outlined in section 2 is applicable as long as H(r) ≥ 0 and globally

defined, so we are forced to constrict the range of our radial coordinate to some region

where H(r) ≥ 0, in this case [rs,∞). If there are two radii, rs1 and rs2 such that rs1 < rs2,

at which H(r) = 0, the space-time is cut off at the outermost radius, rs2. H(r) for the

Atiyah-Hitchin solution is indeed easy to make negative for some rs > nπ; in examining

figure 3 we can see that we can only get negative values of H(r) if we take µ < 0; if χ = 0

any negative value of µ will always yield a solitonic surface but if χ 6= 0 then µ must

be sufficiently large and negative to produce such a surface. The surface of the soliton is

always singular, which can be seen from the Ricci scalar expanded in inverse powers of

H(r):

R =

(

(Ψ2(r))′

2f(r)a(r)b(r)c(r)

)

1

H4(r)
−
(

(H ′(r))2

2f2(r)

)

1

H3(r)
+O

(

1

H2(r)

)

+O
(

1

H(r)

)

(4.62)

where the O(H−2(r)) and O(H−1(r)) terms are too lengthy to write down here and for

our purposes are not overly interesting. Near r = rs 6= nπ, H(r) ≈ H ′(rs)(r− rs) while all

the other metric functions are non-zero. If we make a generic choice of parameters, then

Ψ(r) 6= 0 and the curvature diverges like (r−rs)−4. For the specific choice of χ = j = 0 and

µ < 0, we have Ψ(r) = 0 and H ′(r) 6= 0; in this case the curvature diverges like (r− rs)
−3,

which is the least singular behaviour we can obtain. For this choice of parameters there is

no rotation, meaning there is no velocity of light surface and hence the singularity is truly

naked.

We are again unable to find any event horizons present in the space-time but for generic

choices of parameters we have the singularity at H(r) = 0 shielded by the velocity of light

surface. This is because at the boundary when H(r) → 0, we must have one of three cases:

(i) G(r) → −∞ because of the −H−2(r) dependence, (ii) G(r) < 0 if Ψ(r) ∝ H(r) or (iii)

G(r) = 0 if we can arrange Ψ(r) ∝ Hp(r) where p > 1. The latter is impossible to arrange

because of the form of the solution for Ψ(r) along with the behavior of the metric functions

a(r), b(r) and c(r). We conclude, then, that when H(r) = 0, G(r) < 0 and hence the

velocity of light surface is necessarily outside of the solitonic boundary. The only exception

to this is for χ = j = 0 in which case Ψ(r) = 0 and there is no velocity of light surface and

hence the singularity is not shielded.
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To complete the present discussion we note that the Ricci and Kretschmann curvature

invariants are perfectly regular on the velocity of light surface, as is the field strength;

within a small vicinity of the velocity of light surface the space-time and gauge field are

smooth and well behaved. This surface, just as in the Gödel solutions, is not a physical

boundary to the space-time but for all practical purposes it acts like one since the interior is

completely causally disconnected from the exterior. Because of this causal disconnectedness

from the interior along with the exterior space-time being geodesically complete, one is free

to regard the exterior of the velocity of light surface as comprising the whole space-time.

5. Discussion

We have constructed a solution to five dimensional minimal supergravity using an Atiyah-

Hitchin base space. The Atiyah-Hitchin metric does not admit a triholomorphic Killing

vector field and hence there is no Gibbons-Hawking form of the metric to be exploited.

Instead we employed the semi-analytic solutions found in [13] and were able to solve these

equations to leading order near the Atiyah-Hitchin bolt and at asymptotic infinity. While a

fully explicit analytic solution does not exist for arbitrary choices of the radial coordinate,

we were able to easily perform the necessary numerical integration to explicitly show the

general form of the solutions.

By considering the general form of the space-time metric and using arguments based

on the structures of the metric functions we were able to show that our solution describes

space-times in which there are singular surfaces present. Such singular surfaces are either

the original bolt from the Atiyah-Hitchin base space or a solitonic boundary where the

signature of the space-time turns Euclidean. We have found no event horizons, so the

singular surfaces are naked singularities in the usual sense. The solutions were also shown

to typically include a region of CTCs where the effective Killing vector ∂ψ turns time-like.

The boundary of this region was found to always be at a greater radius than the singular

surface and null rays are unable to cross this boundary so the naked singularities are found

to be typically masked by this velocity of light surface. There is only a small subset of

parameter space, including χ = j = 0 and µ < 0, in which there is no region of CTCs and

for which the singularity is not masked but truly naked.

In our solution we have made the very specific choice of taking the scalar function H to

be a function of radial coordinate only. This is because such a choice is the easiest case to

consider; there surely are further solutions corresponding to differing choices of H. Because

of the equation that H must satisfy, namely ∆H(xa) = 4
9(G+)2, unless G+ = 0 we would

not be able to make H a separable function of xa and a completely general solution for H

would be extremely difficult to find. If G+ = 0, however, then H can be made separable

and at least asymptotically a solution can be found. We predict that because a(r), b(r) and

c(r) are nonzero everywhere except when a(r) = 0 at r = nπ, if the Atiyah-Hitchin base

space does admit solutions with black holes then the potential black holes will necessarily

be extremal and H will most likely be a function of both radial and angular coordinates.

All of these issues are currently left for future work.
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It is well known that quantum particles are able to tunnel through classical barri-

ers. In the context of gravitating bodies, this phenomenon gives rise to thermodynamic

descriptions of black holes based on the emission spectra of such particles. It would be

an interesting problem to analyze whether it is possible in the space-time constructed in

this paper for quantum particles to tunnel between the classically causally disconnected

regions separated by the velocity of light surface. If such a phenomenon is possible then

the study of this space-time from a thermodynamic perspective could be explored. With

such a thermodynamic description, it would be a further interesting problem to describe

such thermodynamics in terms of a microstate counting. We leave these issues for further

consideration.

The solution constructed in this paper bears some similarity to the Gödel and BH-

Gödel solutions previously constructed in [4, 18 – 20, 8, 21 – 23]. One key difference is that

the Gödel space-time is homogeneous and so has CTCs through every point whereas our

solution does not have this property because of the existence of the bolt at r = nπ. One

rather striking and interesting feature of the solution constructed herein is that unlike the

(BH-)Gödel solutions the region containing closed time-like curves is contained entirely

within the bulk of the space-time and spatial infinity is seemingly free of pathologies.

It is conjectured in ref. [22] that whenever CTCs develop in the bulk, the dual CFT is

pathological and not well-defined. The idea is that the CFT metric itself develops CTCs

and we thus would not be able to make sense of a quantum field theory on a space-time with

CTCs. This argument, however, presumes space-times that possess CTCs at asymptotic

infinity so it is not surprising that the CFT should suffer pathologies. The space-time

constructed in this paper, however, does not suffer from CTCs at infinity so it would be

worthwhile to see if the same argument holds here. If there is a holographic interpretation

of our solution, it would be an interesting counter-example to study if the dual CFT were

free of pathologies.
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in universes of the Gödel type, Phys. Rev. D 67 (2003) 106003 [hep-th/0212087].

[20] T. Harmark and T. Takayanagi, Supersymmetric Gödel universes in string theory, Nucl.
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084022 [hep-th/0701107].
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